팬더에서 데이터 정규화
팬더 데이터 프레임이 있다고 가정합니다 df
.
데이터 프레임의 열 현명한 평균을 계산하고 싶습니다.
이것은 쉬워요:
df.apply(average)
그런 다음 현명한 범위는 max (col)-min (col)입니다. 이것은 다시 쉽습니다.
df.apply(max) - df.apply(min)
이제 각 요소에 대해 열 평균을 빼고 열 범위로 나누고 싶습니다. 어떻게 해야할지 모르겠습니다.
어떤 도움 / 포인터라도 대단히 감사합니다.
In [92]: df
Out[92]:
a b c d
A -0.488816 0.863769 4.325608 -4.721202
B -11.937097 2.993993 -12.916784 -1.086236
C -5.569493 4.672679 -2.168464 -9.315900
D 8.892368 0.932785 4.535396 0.598124
In [93]: df_norm = (df - df.mean()) / (df.max() - df.min())
In [94]: df_norm
Out[94]:
a b c d
A 0.085789 -0.394348 0.337016 -0.109935
B -0.463830 0.164926 -0.650963 0.256714
C -0.158129 0.605652 -0.035090 -0.573389
D 0.536170 -0.376229 0.349037 0.426611
In [95]: df_norm.mean()
Out[95]:
a -2.081668e-17
b 4.857226e-17
c 1.734723e-17
d -1.040834e-17
In [96]: df_norm.max() - df_norm.min()
Out[96]:
a 1
b 1
c 1
d 1
sklearn
라이브러리를 가져와도 괜찮다 면 이 블로그에서 언급 한 방법을 추천합니다 .
import pandas as pd
from sklearn import preprocessing
data = {'score': [234,24,14,27,-74,46,73,-18,59,160]}
cols = data.columns
df = pd.DataFrame(data)
df
min_max_scaler = preprocessing.MinMaxScaler()
np_scaled = min_max_scaler.fit_transform(df)
df_normalized = pd.DataFrame(np_scaled, columns = cols)
df_normalized
apply
이것을 위해 사용할 수 있으며 조금 더 깔끔합니다.
import numpy as np
import pandas as pd
np.random.seed(1)
df = pd.DataFrame(np.random.randn(4,4)* 4 + 3)
0 1 2 3
0 9.497381 0.552974 0.887313 -1.291874
1 6.461631 -6.206155 9.979247 -0.044828
2 4.276156 2.002518 8.848432 -5.240563
3 1.710331 1.463783 7.535078 -1.399565
df.apply(lambda x: (x - np.mean(x)) / (np.max(x) - np.min(x)))
0 1 2 3
0 0.515087 0.133967 -0.651699 0.135175
1 0.125241 -0.689446 0.348301 0.375188
2 -0.155414 0.310554 0.223925 -0.624812
3 -0.484913 0.244924 0.079473 0.114448
또한 groupby
관련 열을 선택 하면와 함께 잘 작동합니다 .
df['grp'] = ['A', 'A', 'B', 'B']
0 1 2 3 grp
0 9.497381 0.552974 0.887313 -1.291874 A
1 6.461631 -6.206155 9.979247 -0.044828 A
2 4.276156 2.002518 8.848432 -5.240563 B
3 1.710331 1.463783 7.535078 -1.399565 B
df.groupby(['grp'])[[0,1,2,3]].apply(lambda x: (x - np.mean(x)) / (np.max(x) - np.min(x)))
0 1 2 3
0 0.5 0.5 -0.5 -0.5
1 -0.5 -0.5 0.5 0.5
2 0.5 0.5 0.5 -0.5
3 -0.5 -0.5 -0.5 0.5
Slightly modified from: Python Pandas Dataframe: Normalize data between 0.01 and 0.99? but from some of the comments thought it was relevant (sorry if considered a repost though...)
I wanted customized normalization in that regular percentile of datum or z-score was not adequate. Sometimes I knew what the feasible max and min of the population were, and therefore wanted to define it other than my sample, or a different midpoint, or whatever! This can often be useful for rescaling and normalizing data for neural nets where you may want all inputs between 0 and 1, but some of your data may need to be scaled in a more customized way... because percentiles and stdevs assumes your sample covers the population, but sometimes we know this isn't true. It was also very useful for me when visualizing data in heatmaps. So i built a custom function (used extra steps in the code here to make it as readable as possible):
def NormData(s,low='min',center='mid',hi='max',insideout=False,shrinkfactor=0.):
if low=='min':
low=min(s)
elif low=='abs':
low=max(abs(min(s)),abs(max(s)))*-1.#sign(min(s))
if hi=='max':
hi=max(s)
elif hi=='abs':
hi=max(abs(min(s)),abs(max(s)))*1.#sign(max(s))
if center=='mid':
center=(max(s)+min(s))/2
elif center=='avg':
center=mean(s)
elif center=='median':
center=median(s)
s2=[x-center for x in s]
hi=hi-center
low=low-center
center=0.
r=[]
for x in s2:
if x<low:
r.append(0.)
elif x>hi:
r.append(1.)
else:
if x>=center:
r.append((x-center)/(hi-center)*0.5+0.5)
else:
r.append((x-low)/(center-low)*0.5+0.)
if insideout==True:
ir=[(1.-abs(z-0.5)*2.) for z in r]
r=ir
rr =[x-(x-0.5)*shrinkfactor for x in r]
return rr
This will take in a pandas series, or even just a list and normalize it to your specified low, center, and high points. also there is a shrink factor! to allow you to scale down the data away from endpoints 0 and 1 (I had to do this when combining colormaps in matplotlib:Single pcolormesh with more than one colormap using Matplotlib) So you can likely see how the code works, but basically say you have values [-5,1,10] in a sample, but want to normalize based on a range of -7 to 7 (so anything above 7, our "10" is treated as a 7 effectively) with a midpoint of 2, but shrink it to fit a 256 RGB colormap:
#In[1]
NormData([-5,2,10],low=-7,center=1,hi=7,shrinkfactor=2./256)
#Out[1]
[0.1279296875, 0.5826822916666667, 0.99609375]
It can also turn your data inside out... this may seem odd, but I found it useful for heatmapping. Say you want a darker color for values closer to 0 rather than hi/low. You could heatmap based on normalized data where insideout=True:
#In[2]
NormData([-5,2,10],low=-7,center=1,hi=7,insideout=True,shrinkfactor=2./256)
#Out[2]
[0.251953125, 0.8307291666666666, 0.00390625]
So now "2" which is closest to the center, defined as "1" is the highest value.
Anyways, I thought my application was relevant if you're looking to rescale data in other ways that could have useful applications to you.
This is how you do it column-wise:
[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]
참고URL : https://stackoverflow.com/questions/12525722/normalize-data-in-pandas
'IT story' 카테고리의 다른 글
Django 1.9에서 apps.py의 목적은 무엇입니까? (0) | 2020.07.08 |
---|---|
형식 앞에 * 배치 * 할 때 생성자 형식 인수는 무엇을 의미합니까? (0) | 2020.07.08 |
Java에서 변수 유형을 어떻게 알 수 있습니까? (0) | 2020.07.07 |
&& (AND) 및 || (0) | 2020.07.07 |
만료 날짜가없는 자바 스크립트 쿠키 (0) | 2020.07.07 |